Global Journal of Science Frontier Research Mathematics \& Decision Sciences
Volume 12 Issue 1 Version 1.0 January 2012
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Note on Elzaki Transform of Distributions and Certain Space of Boehmians

Abstract

By S.K.O.Al-Omari Al-Balqa Applied University, Amman ,Jordan Abstract - The Elzaki transform transform was discussed in [19] as a motivation of the classical Sumudu transform. In this article, we extend the Elzaki transform to a space of tempered distributions (distributions of slow growth) by known kernel method. Further, we establish two spaces of Boehmians so that the Elzaki transform is well defined. Certain theorems are established in some details.

Keywords and phrases : Generalized function; Elzaki Transform; Sumudu Transform; Tempered Distribution; Boehmian Space.
1991 Mathematics Subject ClassiÖcation. Primary 54C40, 14E20; Secondary 46E25, $20 C 20$.

Strictly as per the compliance and regulations of:

Note on Elzaki Transform of Distributions and Certain Space of Boehmians

S.K.Q.Al-Omari

Abstract

The Elzaki transform transform was discussed in [19] as a motivation of the classical Sumudu transform. In this article, we extend the Elzaki transform to a space of tempered distributions (distributions of slow growth) by known kernel method. Further, we establish two spaces of Boehmians so that the Elzaki transform is well defined. Certain theorems are established in some details.

Keywords and phrases : Generalized function; Elzaki Transform; Sumudu Transform; Tempered Distribution; Boehmian Space.

I. INTRODUCTION

n order to solve differential equations, several integral transforms were extensively used and applied in theory and application such as the Laplace, Fourier, Mellin, Hankel and Sumudu transforms, to name but a few. In the sequence of these transforms, rescently, Elzaki,T. and Elzaki, S. [17,18,19] introduced a motivation of the Sumudu transform [14-16] and applied it to the solution of ordinary and partial differential equations as well.

The Elzaki transform over the set functions is defined by

$$
\begin{equation*}
A=\left\{f(t): \exists M, \tau_{1}, \tau_{2}>0,|f(t)|<M e^{t / \tau_{j}}, t \in(-1)^{j} \times(0, \infty)\right\} \tag{1}
\end{equation*}
$$

by the formula

$$
\begin{equation*}
\tilde{f}(z)=E f(z)=: \int^{\infty} z f(t) e^{\frac{-t}{z}} d t, z \in\left(-\tau_{1}, \tau_{2}\right) . \tag{2}
\end{equation*}
$$

The general properties of Elzaki transforms are found in above citations. In fact there is a relationship between Elzaki transform and some other transforms. In particular, the strong relationship between the Elzaki transform and Laplace transform was already proved in [19] which can be decribed as follows. Let f be a function of exponential order and $L f$ and $E f$ be the Laplace and Elzaki transforms of f, respectively, then

$$
E f(z)=z L f\left(\frac{1}{z}\right) .
$$

and hence

$$
L f\left(\frac{1}{z}\right)=z E\left(\frac{1}{z}\right) .
$$

The following are needful in the sequel.
(1) If a and b are non-negative real numbers then

$$
E(a f(t)+b g(t))(z)=a E f(z)+b E g(z) .
$$

(2) $\lim _{t \rightarrow 0} f(t)=\lim _{z \rightarrow 0} E f(z)=f(0)$.

II. ElZaki Transform of Boehmians

The minimal structure necessary for the construction of Boehmians consists of the following: (1) A nonempty set A ; (2) A commutative semigroup (B, \star) ; (3) An operation $\star: A \times B \rightarrow A$ such that for each $x \in A$ and s_{1}, s_{2}, $\in B, x \star\left(s_{1} \star s_{2}\right)=\left(x \star s_{1}\right) \star s_{2}$; (3) A collection $\Delta \subset B^{N}$ such that: (a) If $x, y \in A,\left(s_{n}\right) \in \Delta, x \star s_{n}=y \star s_{n}$ for all then $x=y, ;(b)$ If $\left(s_{n}\right),\left(t_{n}\right) \in \Delta$, then $\left(s_{n} \star t_{n}\right) \in \Delta$.
Elements of Δ are called delta sequences. Consider

$$
Q=\left\{\left(x_{n}, s_{n}\right): x_{n} \in A,\left(s_{n}\right) \in \Delta, x_{n} \star s_{m}=x_{m} \star s_{n}, \forall m, n \in \mathbf{N}\right\} .
$$

[^0]If $\left(x_{n}, s_{n}\right),\left(y_{n}, t_{n}\right) \in Q, x_{n} \star t_{m}=y_{m} \star s_{n}, \forall m, n \in \mathbf{N}$, then we say $\left(x_{n}, s_{n}\right) \sim\left(y_{n}, t_{n}\right)$. The relation \sim is an equivalence relation in Q. The space of equivalence clases in Q is denoted by β. Elements of β are called Boehmians. Between A and β there is a canonical embedding expressed as $x \rightarrow \frac{x \star s_{n}}{s_{n}}$. The operation \star can be extended to $\beta \times A$ by $\frac{x_{n}}{s_{n}} \star t=\frac{x_{n} \star t}{s_{n}}$. The relationship between the notion of convergence and the product \star is given by:
(1) If $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in A and, $\phi \in B$ is any fixed element, then $f_{n} \star \phi \rightarrow f \star \phi$ in A (as $n \rightarrow \infty$); (ii) If $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in A and $\left(\delta_{n}\right) \in \Delta$, then $f_{n} \star \delta_{n} \rightarrow f$ in $A($ as $n \rightarrow \infty)$.

The operation \star is extended to $\beta \times B$ as follows: If $\left[\frac{f_{n}}{s_{n}}\right] \in \beta$ and $\phi \in B$, then $\left[\frac{f_{n}}{s_{n}}\right] \star \phi=\left[\frac{f_{n} \star \phi}{s_{n}}\right]$.
Convergence in β is defined as
(1) : A sequence $\left(h_{n}\right)$ in β is said to be δ convergent to h in $\beta, h_{n} \xrightarrow{\delta} h$, if there exists $\left(s_{n}\right) \in \Delta$ such that $\left(h_{n} \star s_{n}\right),\left(h \star s_{n}\right) \in A, \forall k, n \in \mathbf{N}$, and $\left(h_{n} \star s_{k}\right) \rightarrow\left(h \star s_{k}\right)$ as $n \rightarrow \infty$, in A, for every $k \in \mathbf{N}$.
(2) : A sequence $\left(h_{n}\right)$ in β is said to be Δ convergent to h in $\beta, h_{n} \xrightarrow{\Delta} h$, if there exists a $\left(s_{n}\right) \in \Delta$ such that $\left(h_{n}-h\right) \star s_{n} \in A, \forall n \in \mathbf{N}$, and $\left(h_{n}-h\right) \star s_{n} \rightarrow 0$ as $n \rightarrow \infty$ in A. For further details, we refer to $[1-8,10,11,13]$.

The convolution product between two functions u and v is given by the integral

$$
\begin{equation*}
(u * v)(y)=\int_{0}^{\infty} u(y-x) v(x) d x \tag{3}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
(u * v)(y)=\int u(t) \tau_{y} \tilde{v}(t) d t \tag{4}
\end{equation*}
$$

where

$$
\tilde{v}(t)=v(-t) \text { and } \tau_{y} v(t)=v(t-y)
$$

Lemma 2.1. $E(u * v)(z)=\frac{1}{z}(E u)(z)(E v)(z)$.
Proof See [19, Theo.2-6] :
Denote by S the space of all complex valued functions $s(t)$ that are infinitely smooth and are such that, as $|t| \rightarrow \infty$, they and their partial derivatives decrease to zero faster than every power of $\frac{1}{|t|}$. This required behaviour as $|t| \rightarrow \infty$ can also be stated in the following alternative way. For t one-dimensional, every function $s(t) \in S$ satisfies the infinite set of inequalities

$$
\begin{equation*}
\left|t^{m} s^{(k)}(t)\right| \leq C_{m k}, t \in(0, \infty) \tag{5}
\end{equation*}
$$

where m and k run through all non negative integers. The elements of S are called testing functions of rapid descents. S is a linear space. The dual space of S is denoted by \dot{S}. A distribution $u \in S$ is said to be tempered distribution or distribution of slow growth.

Let \mathbf{R}_{+}be the field of positive real numbers and z be arbitrary but fixed in \mathbf{R}_{+}then

$$
D_{t}^{k}\left(z e^{\frac{-t}{z}}\right)=(-1)^{k} z^{1-k} e^{\frac{-t}{z}}, k=1,2, \ldots
$$

Hence for arbitrary but fixedz $z \in \mathbf{R}_{+}$, we get

$$
\begin{equation*}
\left|t^{m} D_{t}^{k}\left(z e^{\frac{-t}{z}}\right)\right|=\left|t^{m} z^{1-k} e^{\frac{-t}{z}}\right|<\infty, 0<t<\infty \tag{6}
\end{equation*}
$$

By aid of (6) we define the Elzaki transform of $u \in S$ by kernel method as

$$
t, z \in \mathbf{R}_{+}
$$

$$
\begin{equation*}
E f(z)=\left\langle u(t), z e^{\frac{-t}{z}}\right\rangle \tag{7}
\end{equation*}
$$

Denote by D the space of test functions of compact supports on \mathbf{R}_{+}then
Definition 2.2 Let $u \in S$ and $s \in D$ then we define the convolution $u * s$ to be C^{∞} function such that

$$
\begin{equation*}
(u * v)(y)=\left\langle u, \tau_{y} \tilde{v}\right\rangle, \tag{8}
\end{equation*}
$$

where $\tilde{v}(t)=v(-t)$ and $\tau_{y} v(t)=v(t-y), t \in R_{+}$. Equ(8) can also be written as

$$
\begin{equation*}
(u * v)(y)=\langle u(t), v(t-y)\rangle \tag{9}
\end{equation*}
$$

Definition 2.3. The convolution of two tempered distributions $u, v \in \dot{S}$ is defined as an element in \dot{S} through

$$
\begin{equation*}
\langle u * v, s\rangle=\langle u(y),\langle v(t), \phi(t+y)\rangle\rangle, s \in D \tag{10}
\end{equation*}
$$

It can be noted that if $u \in \dot{S}, v \in S$ then $u * v \in O_{m}$, where O_{m} is the space of multipliers for \dot{S}. In fact $O_{m} \subset \dot{S}$. This, establishes the following lemma.
Lemma 2.4. If $u \in \dot{S}, s \in D$ then $u * s \in \dot{S}$.
Lemma 2.5. If $u \in \dot{S}, s_{1}, s_{2} \in D$ then

$$
\left(u * s_{1}\right) * s_{2}=u *\left(s_{1} * s_{2}\right)
$$

Proof. Since $D \subset S, u * s_{1} \in C^{\infty}$ and hence $\left(u * s_{1}\right) * s_{2} \in C^{\infty}, u *\left(s_{1} * s_{2}\right) \in C^{\infty}$. Aso, $u \in \dot{S}, s_{1} \in D \subset S \subset S$, implies

$$
u * s_{1} \in \dot{S}
$$

We write

$$
\begin{aligned}
\left(\left(u * s_{1}\right) * s_{2}\right)(y) & =\left\langle u * s_{1}, \tau_{y} \tilde{s}_{2}\right\rangle \\
& =\left\langle u(t),\left\langle s_{1}(x), \tau_{y} \tilde{s}_{2}(t+x)\right\rangle\right\rangle \\
& =\left\langle u(t),\left(s_{1} * s_{2}\right)(y-t)\right\rangle \\
& =\left(u *\left(s_{1} * s_{2}\right)\right)(y) .
\end{aligned}
$$

Hence

$$
\left(u * s_{1}\right) * s_{2}=u *\left(s_{1} * s_{2}\right) .
$$

This completes the proof.
Lemma 2.6 If $u_{1}, u_{2} \in \mathcal{S}, s \in D$ and $\alpha \in R$ then we have (1) $\left(u_{1}+u_{2}\right) * s=u_{1} * s+u_{2} * s . ;(2) \alpha\left(u_{1} * s\right)=\left(\alpha u_{1}\right)$ $* s=u_{1} *(\alpha s)$. Let Δ be the collection of all sequences $\left(r_{n}\right)$ from D such that Equ. $(11-13)$ satisfies.

$$
\begin{gather*}
\int_{\mathbf{R}_{+}} r_{n}(t) d t=1 \tag{11}\\
\int_{\mathbf{R}_{+}}\left|r_{n}(t)\right| d t<M, M \in \mathbf{R}_{+} \tag{12}\\
\operatorname{supp} r_{n}(t) \rightarrow 0 \text { as } n \rightarrow \infty \tag{13}
\end{gather*}
$$

Sequences from Δ are called delta sequences.
Lemma 2.7. If $u_{n} \rightarrow u$ is S as $n \rightarrow \infty$ then

$$
u_{n} * s \rightarrow u * s \text { as } n \rightarrow \infty \text { in } \dot{S}, s \in D
$$

Lemma 2.8. If $u_{n} \rightarrow u$ in \dot{S} as $n \rightarrow \infty$ then $u_{n} * r_{n} \rightarrow u$ as $n \rightarrow \infty$ for each $\left(r_{n}\right) \in \Delta$.
The described Boehmian space is denoted by $O(\dot{S}, D, \Delta)$. Next, we describe another Boehmian space as follows. Let H be the set of all Elzaki transforms of tempered distributions from \dot{S}. That is, for each $h \in H$, there is $u \in S$ such that $h=E u$. Moreover, $h_{n} \rightarrow h$ in H if there are $u_{n}, u \in \dot{S}$ such that $u_{n} \rightarrow u$ in \dot{S}.
Define a mapping • between $h \in H$ and $s \in D$ by

$$
\begin{equation*}
(h \bullet s)(z)=h(z) \int e^{\frac{-t}{z}} s(t) d t \tag{14}
\end{equation*}
$$

Lemma 2.9. Let $h \in H$ such that $h=E u, u \in S$ and $s \in D$ then

$$
E(u * s)(z)=(h \bullet s)(z)
$$

Proof. Using definitions and Leibnitz' rule and change of varibles yields

$$
\begin{aligned}
E(u * s)(z) & =\int s(t) d t \int u(y) z e^{-\frac{t+y}{z}} d y \\
& =\int u(y) z e^{\frac{-y}{z}} d y \int e^{\frac{-t}{z}} s(t) d t \\
& =h(z) \int e^{\frac{-t}{z}} s(t) d t \\
& =(h \bullet s)(z) .
\end{aligned}
$$

Hence the Lemma.
Following lemmas are straightforward. We avoid same details.
Lemma 2.10 If $h \in H, s \in D$ then $h \bullet s \in H$.
Note that if $h \in H$ then $h=E u$, for some $u \in \dot{S}$. Therefore $h \bullet s=E u \bullet s=E(u * s)$, by Lemma 2.9. Since $u * s \in S$, the lemma follows.
Lemma 2.11. If $h \in H, s \in D$ then $E^{-1}(h \bullet s)=E^{-1} h * \phi$ where E^{-1} is the inverse Elzaki transform
Proof. Let $u \in S$ such that $E u=h$ then

$$
E(u * s)=h \bullet s
$$

Hence, employing E^{-1} on both sides yields $E^{-1}(h \bullet s)=u * s=E^{-1} h * s$.
Lemma 2.12. If $h_{1}, h_{2} \in H, s_{1}, s_{2} \in$ then

$$
\left(h_{1}+h_{2}\right) \bullet s=h_{1} \bullet s+h_{2} \bullet s ;(2) h \bullet\left(s_{1} * s_{2}\right)=\left(h \bullet s_{1}\right) \bullet s_{2} .
$$

Lemma 2.13. If $h_{n} \rightarrow h$ and $s \in D$ then $h_{n} \bullet s \rightarrow h \bullet s$.
Lemma 2.14. If $h_{n} \rightarrow h$ in H and $\left(r_{n}\right) \in \Delta$ then

$$
h_{n} \bullet r_{n} \rightarrow h \text { as } n \rightarrow \infty .
$$

The space $O(H, D, \Delta)$ can therefore be regarded as a Boehmian space.

iII. ElZaki Transform of Boehmians

Let $\beta_{1}=\left[\frac{u_{n}}{s_{n}}\right] \in O(\dot{S}, D, \Delta)$ then we define the extended Elzaki transform of β_{1} as

$$
\begin{equation*}
\hat{E}\left[\frac{u_{n}}{r_{n}}\right]=\left[\frac{E u_{n}}{r_{n}}\right] \in O(H, D, \Delta) \tag{15}
\end{equation*}
$$

where $\left(r_{n}\right) \in \Delta$.
Theorem 3.1. $\hat{E}: O(\dot{S}, D, \Delta) \rightarrow O(H, D, \Delta)$ is well defined.
Proof: Let $\left[\frac{u_{n}}{r_{n}}\right]=\left[\frac{v_{n}}{\psi_{n}}\right]$ in $O(\dot{S}, D, \Delta)$ then

$$
u_{n} * \psi_{m}=v_{m} * r_{n}=v_{n} * r_{m}
$$

Employing E on both sides,

$$
\left(E u_{n}\right)(z) \int \psi_{m}(t) e^{\frac{-t}{z}} d t=\left(E v_{n}\right)(z) \int r_{m}(t) e^{\frac{-t}{z}} d t
$$

Hence,

$$
E u_{n} \bullet \psi_{m}=E v_{n} \bullet r_{m}
$$

That is,
Therefore,

$$
\frac{E u_{n}}{r_{n}} \sim \frac{E v_{n}}{\psi_{n}}
$$

$$
\left[\frac{E u_{n}}{r_{n}}\right]=\left[\frac{E v_{n}}{\psi_{n}}\right]
$$

This completes the proof of the theorem.
Theorem 3.2. $\hat{E}: O(\dot{S}, D, \Delta) \rightarrow O(H, D, \Delta)$ is linear
Proof. Let $\left[\frac{u_{n}}{r_{n}}\right],\left[\frac{v_{n}}{\psi_{n}}\right]$. From definitions and Equ. (15) we get

$$
\begin{aligned}
\hat{E}\left(\left[\frac{u_{n}}{r_{n}}\right]+\left[\frac{v_{n}}{\psi_{n}}\right]\right) & =\hat{E}\left(\left[\frac{u_{n} * \psi_{n}+v_{n} * r_{n}}{r_{n} * \psi_{n}}\right]\right) \\
& =\left[\frac{E\left(u_{n} * \psi_{n}+v_{n} * r_{n}\right)}{r_{n} * \psi_{n}}\right] \\
& =\left[\frac{E\left(u_{n} * \psi_{n}\right)+E\left(v_{n} * r_{n}\right)}{r_{n} * \psi_{n}}\right] \\
& =\left[\frac{E u_{n} \bullet \psi_{n}+E v_{n} \bullet r_{n}}{r_{n} * \psi_{n}}\right] \\
& =\left[\frac{E u_{n}}{r_{n}}\right]+\left[\frac{E v_{n}}{\psi_{n}}\right] .
\end{aligned}
$$

Hence

$$
\hat{E}\left(\left[\frac{u_{n}}{r_{n}}\right]+\left[\frac{v_{n}}{\psi_{n}}\right]\right)=\hat{E}\left[\frac{u_{n}}{r_{n}}\right]+\hat{E}\left[\frac{v_{n}}{\psi_{n}}\right] .
$$

Also, if $\alpha \in \mathbf{R}_{+}$then

$$
\alpha \hat{E}\left[\frac{u_{n}}{r_{n}}\right]=\alpha\left[\frac{E u_{n}}{r_{n}}\right]=\left[\frac{E\left(\alpha u_{n}\right)}{r_{n}}\right] .
$$

Hence

$$
\alpha \hat{E}\left[\frac{u_{n}}{r_{n}}\right]=\hat{E}\left(\alpha\left[\frac{u_{n}}{r_{n}}\right]\right) .
$$

This completes the proof.
Theorem 3.3. \hat{E} is one-one.
Proof. Let $\beta_{1}, \beta_{2} \in O(\dot{S}, D, \Delta)$ such $\beta_{1}=\left[\frac{u_{n}}{r_{n}}\right]$ and $\beta_{2}=\left[\frac{v_{n}}{\psi_{n}}\right]$.
Assume $E \beta_{1}=E \beta_{2}$ then $\left[\frac{E u_{n}}{r_{n}}\right]=\left[\frac{E v_{n}}{\psi_{n}}\right]$. That is,

$$
E u_{n} \bullet \psi_{n}=E v_{m} \bullet r_{n} .
$$

Using Lemma 2.9,

$$
E\left(u_{n} * \psi_{m}\right)=E\left(v_{m} * r_{n}\right) .
$$

Therefore

$$
u_{n} * \psi_{m}=v_{m} * r_{n}
$$

Hence
and

$$
\frac{u_{n}}{r_{n}} \sim \frac{v_{n}}{\psi_{n}}
$$

This completes the proof of the lemma. $\quad\left[\frac{u_{n}}{r_{n}}\right] \sim\left[\frac{v_{n}}{\psi_{n}}\right]$.
Theorem 3.4. $\hat{E}: O(\hat{S}, D, \Delta) \rightarrow O(H, D, \Delta)$ is onto.
Proof. Let $\left[\frac{h_{n}}{r_{n}}\right] \in O(H, D, \Delta)$ then

$$
h_{n}=E u_{n},
$$

for all n. $\left[\frac{u_{n}}{r_{n}}\right]$ is in $O(\dot{S}, D, \Delta)$ such that

$$
\hat{E}\left[\frac{u_{n}}{r_{n}}\right]=\left[\frac{E u_{n}}{r_{n}}\right]=\left[\frac{h_{n}}{r_{n}}\right] .
$$

Hence the theorem. Now, we de.ne the inverse \hat{E}^{-1} by the relation

$$
\begin{equation*}
\hat{E}^{-1}\left[\frac{h_{n}}{r_{n}}\right]=\left[\frac{\hat{E}^{-1} h_{n}}{r_{n}}\right] \tag{16}
\end{equation*}
$$

for every $h_{n} \in O(H, D, \Delta)$.
Theorem 3.5. $\hat{E}^{-1}: O(H, D, \Delta) \rightarrow O(\dot{S}, D, \Delta)$ is well defined.
Theorem 3.6. $\hat{E}^{-1}: O(H, D, \Delta) \rightarrow O(\dot{S}, D, \Delta)$ is linear.
Theorem 3.7. $\hat{E}^{-1}: O(H, D, \Delta) \rightarrow O(\dot{S}, D, \Delta)$ is an isomorphism.
Proof of Theorem 3.5, 3.6, 3.7, are analogous to that of Theorem 3.1, 3.2,3.3, and 3.4. Detailed proofs are avoided.

References Références Referencias

1. Al-Omari, S.K.Q. , Loonker D., Banerji P. K. and Kalla, S. L.(2008) Fourier sine(cosine) transform for ultradistributions and their extensions to tempered and ultra Boehmian spaces, Integral Transforms Spec. Funct. 19(6), 453 . 462.
2. Al-Omari, S.K.Q.(2009). The Generalized Stieltjes and Fourier Transforms of Certain Spaces of Generalized Functions, Jord.J .Math.Stat.2(2),55-66.
3. Al-Omari, S.K.Q. (2011). On the Distributional Mellin Transformation and its Extension to Boehmian Spaces, Int. J. Contemp. Math. Sciences, 6(17), 801-810.
4. Al-Omari, S.K.Q. (2011). A Mellin Transform for a Space of Lebesgue Integrable Boehmians, Int. J. Contemp. Math. Sciences, 6(32), 1597-1606.
5. Boehme, T.K. (1973). The Support of Mikusinski Operators,Tran.Amer. Math. Soc.176,319-334.
6. Banerji,P.K., Al-Omari,S.K.Q. and Debnath, L. Tempered Distributional Fourier Sine(Cosine)Transform, Integral Transforms Spec. Funct. 17(11) (2006),759-768.
7. Mikusinski,P.(1987). Fourier Transform for Integrable Boehmians, Rocky Mountain J.Math.17(3),577-582.
8. Mikusinski, P.(1995). Tempered Boehmians and Ultradistributions, Proc. Amer. Math. Soc. 123(3), 813-817.
9. Pathak, R.S.(1997). Integral transforms of generalized functions and their applications, Gordon and Breach Science Publishers,Australia ,Canada, India, Japan.
10. Roopkumar,R.(2009). Mellin transform for Boehmians, Bull.Institute of Math.,Academica Sinica,4(1), p.p.75-96.
11. Roopkumar,R.(2007). Stieltjes Transform for Boehmians, Integral Transf.Spl.Funct.18(11),845-853.
12. Zemanian, A.H. (1987). Generalized integral transformation, Dover Publications, Inc., New York.First published by interscience publishers, New York (1968).
13. Mikusinski,P.(1983). Convergence of Boehmianes, Japan, J.Math ,9(1)169-179.
14. Watugala,G.K.(1993), Sumudu Transform:a new integral Transform to Solve Differential Equations and Control Engineering Problems. Int.J.Math.Edu.Sci.Technol.,24(1),35-43.
15. Weerakoon,S.,(1994), Application of Sumudu Transform to partial differential Equations, Int.J.Math.Edu.Sci. Technol.25,277-283.
16. Belgasem, F.B.M., karaballi, A.A., and Kalla,S.L.(2003) Analytical investigations of the Sumudu transform and applications to integral integral production equations. Math. probl.Ing. no.3-4,103-118
17. Tarig M. Elzaki and Salih M. Elzaki(2011) On the Elzaki Transform and Higher Order Ordinary Diも erential Equations, Advan.Theor. Appl. Math. 6(1),107-113. 8 S.K.Q.AL-OMARI
18. Tarig M. Elzaki and Salih M. Elzaki(2011) Application of New Transform .Elzaki Transform. to Partial Di€ erential Equations, Glob.J.Pure. Appl. Mat.7(1),65-70.
19. Tarig M. Elzaki and Salih M. Elzaki(2011) On the Connections Between Laplace and Elzaki Transforms,Advan.Theor. Appl. Math. 6(1),1-10.

[^0]: Author : Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134, Jordan. E-mail : s.k.q.alomari@fet.edu.jo

