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Note on Elzaki Transform of Distributions 
and Certain Space of Boehmians 

S.K.Q.Al-Omari 

AAbstract  - The Elzaki transform transform was discussed in [19] as a motivation of the classical Sumudu transform. In this article, 
we extend the Elzaki transform to a space of tempered distributions (distributions of slow growth) by known kernel method. 

some details. 

I. INTRODUCTION

 

n order to solve differential equations, several integral 
application such as the Laplace, Fourier,

 

Mellin, Hankel and

 

Sumudu transforms, to name but a few. In the 
sequence of

 

these transforms, rescently, Elzaki,T. and Elzaki, S. [17,18,19] introduced a motivation of the Sumudu 
transform [14

 

-16] and applied it to the solution of ordinary

 

and partial differential equations as well.

 

The Elzaki transform over the set functions is defined by

 

 

(1) 

 

by the formula

 

 

(2) 

 

The general properties of Elzaki transforms are found in above citations. In fact

 

there is a relationship 
between Elzaki transform and some other transforms. In

 

particular, the strong relationship between the Elzaki 
transform and Laplace transform

 

was already proved in [19] which can be decribed as follows. Let 

  

be a function

 

of exponential order and 

   

and 

   

be the Laplace and Elzaki transforms of

  

,

 

respectively, then

 
 

and hence

 

 

 
 

 The following are needful in the sequel.
 (1) If 

 
and 

 
are non-negative real numbers then

 

 
(2)  

II. ELZAKI TRANSFORM OF BOEHMIANS 

The minimal structure necessary for the construction of Boehmians consists of the following: (1) A nonempty 
set A ; (2) A commutative semigroup  An operation  such that for each and 

 A collection such that: If  for all 

then If then  

Elements of are called delta sequences. Consider

 
 

  

Author :

 

Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134,

 

Jordan. 

 

E - mail

 

: s.k.q.alomari@fet.edu.jo

 
 

I
 

Keywords and phrases : Generalized function; Elzaki Transform; Sumudu Transform; Tempered Distribution; 
Boehmian Space.

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
er

sio
n

I
V 

I
Ja
nu

ar
y

20
12

  
 F
)

)

© 2012 Global Journals Inc.  (US)

1

Further, we establish two spaces of Boehmians so that the Elzaki transform is  well  defined . Certain theorems are established in 

transforms were extensively used and applied in theory and 



 
 Elements of 

Boehmians. Between and there is a canonical embedding expressed as  
 

The operation can
 be extended to by    

 
The relationship between the notion of

 

convergence and the product 

is given by:

 (1) If as in and, is any fixed element, then 
 

in If 
as in and then  in 

 The operation is extended to as follows: If 
 

 

and ,then

 
 

 
 

 

Convergence in is defined as

 

   sequence in is said to be convergent to in 

 
 

if

 

there exists such that 

and as in for every 

 

in is said to be convergent to in 

 
 

if

 

there exists a such that 

 

and 

  

as in For further details, we refer to 

  

The convolution product between two functions and is given by the integral

 
 

 
 

  

or, equivalently,

 
 

 
 

where

 
  

LLemma 2.1.

  
 

Proof

 

See [19, Theo.2-6] :

 

Denote by the space of all complex valued functions that are infinitely

 

smooth and are such that, as 
they and their partial derivatives decrease

 

to zero faster than every power of 

 
 

This required behaviour as 

can also

 

be stated in the following alternative way. For one-dimensional, every function

 the infinite set of inequalities

 
 
 

 
 

 

where and run through all non negative integers. The elements of are

 

is a linear space. The dual space of

 

is denoted by A distribution is said to be tempered 

 

distribution of slow growth.

 

If then we say The relation 
is an equivalence relation in The space of equivalence clases in is denoted by are called 

   sequence 

and 

satisfies 

 rapid descents. 
called testing functions of

distribution or

Let be the field of positive real numbers and be arbitrary but fixed in then

Hence for arbitrary but fixed z we get

By aid of (6) we define the Elzaki transform of by kernel method as
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DDefinition 2.2

  

Let and then we define the convolution to be

 

function such that

 
 

where and 

 

Equ(8) can also be written as

 
  

Definition 2.3.

 

The convolution of two tempered distributions is

 

defined as an element in through

 
 

It can be noted that if then where is the space of

 

multipliers for In fact 
This, establishes the following lemma.

 

Lemma 2.4.

 

If then 

 

Lemma 2.5.

 

If then

 
 

Proof.

 

Since and hence 

 

implies

 
 

We write

 
 

 
  

 
 

Hence

 
 

This

 

completes the proof.

 

Lemma 2.6 If and then we have

Let be the collection of all sequences from such that Equ. satisfies.

Sequences from are called delta sequences.

Lemma 2.7. If then

as 

Lemma 2.8. If as as for each

The described Boehmian space is denoted by Next, we describe another Boehmian space as follows.

Let be the set of all Elzaki transforms of tempered distributions from That is, for each there is 

such that Moreover, if there are such that in 
Define a mapping between and by

in 

Lemma 2.9. Let such that and then
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Hence the Lemma.

 

Following lemmas are

 

straightforward. We avoid same details.

 

LLemma 2.10

 

If then 

 

Note that if then for some Therefore 

 

by Lemma 2.9. Since 
the lemma follows.

 

Lemma 2.11.

 

If then where is the

 

Proof. Using definitions and Leibnitz' rule and change of varibles yields

inverse Elzaki transform

:Proof. Let such that then

Hence, employing on both sides yields 

Lemma 2.12. If then

Lemma 2.13. If and then 

Lemma 2.14. If in and then

The space can therefore be regarded as a Boehmian space.

III. ELZAKI TRANSFORM OF BOEHMIANS

Let then we define the extended Elzaki transform of as

where 

Theorem
 
3.1. is well defined.

Proof: Let thenin
 

Employing on both sides,

Hence,

Therefore,

That is,
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This completes the proof of the theorem.

TTheorem 3.2. is linear

Proof. Let From definitions and Equ.(15) we get

Hence

Also, if then

Hence

This completes the proof.

Theorem 3.3. is one-one.

Proof. Let such

Assume then That is,

Using Lemma 2.9,

Therefore

This completes the proof of the lemma.

Theorem 3.4. is onto.

Proof. Let then

Hence

and 

and 
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Hence the theorem. Now, we de.ne the inverse by the relation

for every 

Theorem 3.5. is well defined.

Theorem 3.6. is linear.

Theorem 3.7. is an isomorphism.

Proof of Theorem 3.5, 3.6, 3.7, are analogous to that of Theorem 3.1, 3.2, 3.3, and 3.4. Detailed proofs are avoided.
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